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CONDITIONS FOR THE CONVERGENCE IN DISTRIBUTION
OF MAXIMA OF STATIONARY NORMAL PROCESSES

by

M.R. Leadbetter, G. Lindgren, and II. Rootzén

1. INTRODUCTION

© - - -
Let {Et}:=—w be a stationary normal sequence with zero means, unit
variances and covariances r_ = E(E E . ), and put M = max § . If
T t2t+T 1<t<n

0, T + 0, i.e. if the variables are independent then

-X
(1.1) Pla (b ) <x)>e  , n >,

where a = Y2 log n and b= = % an{log log n + log 47w}, This result
goes back to Fisher & Tippet (1928). The same conclusion was obtained under
successively weaker dependence restrictions by Watson (1954), Loynes (1965),

and Berman (1964). Berman’s result is that if either (i) T logn=+ 0 as
r2
O0O'n

sidered a somewhat weaker version of (i) (in the vein of (2.2') below) and

n > ®, or (ii) f:g < o then (1.1) holds. Mittal & Ylvisaker (1975) con-
from their paper it can be seen that (i) is rather close to what is possible:
if e.g. r logn~=+7Y >0 then a different limit law holds. Nevertheless
neither of (i) and (ii) implies the other in general, and the precise relation
between the conditions is not obvious.

For a standardized stationary normal process {£(t), —®<t<wo} in
continuous time with covariance function r(T) = E(E(t) §(t+1)) the asymptotic
behaviour of M(T) = max £(t) depends not only on the rate of decay of

0<t<T
r(t) as T * ®, but also on the local behaviour of r(T). If

(1.2) r(t) =1 - c¢|t|® + o(||D, T+0,

where C is a constant (or, more generally, a function of slow growth)
and 0 < a < 2 then there is a version of £(t) which has continuous
sample paths, and if r(T) decreases quickly enough, then for this version

-X
(1.3)  PGayM(D-by) <) +e° , Tae,




s

where a, = V2 log T and by = a, + a;l{(-;- - %)log log T +

+ logl (2m)~1/2¢71/2

HQZ(Z-G)/ZQ]}. This has been proved under various
conditions by Rozanov & Volkonski (1959), Cramér (1965), and Berman (1971a)
for a = 2 and by Pickands (1969) and Berman (1971b) for 0 < a < 2.
Pickands and Berman assumed in addition to (1.2) either of the two conditions
(1') r(t) logt >0 as t -+ o, or (ii') fr(t)2 dt < ® (or fr(t)p dt < =,
some p > 0). Again, neither one of (i') and (ii') implies the other.

In the present note we consider conditions which are weaker than (i)
and (ii) (or (i') and (ii')) but which still imply that (1.1) or (1.3)
holds. These conditions seem to contain more of what is essential for (1.1)
and (1.3) and will also clarify the relation between (i) and (ii) and between

(i') and (ii'). We treat the discrete time case in Section 2 and the con-

tinuous time case in Section 3.

2. DISCRETE TIME

In this section we shall show that the condition
n
(2.1) n 1 z lrkllog k eYIrkllog k, 0, as n > %o,
k=1

for some Y > 2, together with g 0 is sufficient for (1.1) to hold.
Essentially Condition (2.1) prevents L log n from being too large
too often.

Define On(x) ={k; 1 <k <n, |rk| log k > x} and let vn(x) be
the number of elements in On(x). The content of Condition (2.1) can be
further elucidated by considering the following slightly stronger condition

n
(2.2) et - |t | log k >0, as n > =, and
k=1

vn(K) = O(nn) for some K >0, n <1,

and the equivalent condition




(2.2") vn(e) = o{n), V€ >0, and

vn(K) = O(nn) for some K > 0, n < 1.

Obviocusly (i) implies (2.2'). Further, if 2:=1}r i w for some p > 0

5
then, since 2:;1ltk‘p > Ze (x)'rk!p > vn(x)(xllog n)p, it follows that
vn(x) = 0((log n)P). In par:icular, taking p = 2 we see that also (ii)
implies (2.2'), so that both (i) and (ii) are stronger than (2.2) and (2.2%).
The following lemma states that (2.2) or (2.2%) ihply (2.1) and consequently

that both (i) and (ii) imply (2.1).

LEMMA 2.1 If r *0 as n-+w, then (2.2), and (2.2') both imply (2.1).

PROOF It is easily seen that (2.2) and (2.2°) are equivalent so we need

only show that (2.2) implies (2.1). We have

e ¥|r, |log k. _ Y|r, |log k
(2.3) n £ z Irkl log k e % =n ; X lrkl log k e & +
k=1 lsksn
k€6 (K)
i Y|r, |1og k
«n - % Irkl log k e x 5
kEOn(K)

and proceed to estimate the sums in the right member separately, assuming

that (2.2) holds. Now

n Y|r, |log k n
O S lrkl log k e . < o % z Irkl log k + 0, n -+
k=1 k=1
k€6 (K)

by the first part of (2.2). Since we assume that n 0, there is an integer

N such that Y[rkl < (1-n)/2 for k > N. Hence

o Ylr, |1log k
n - z [rkl log k e .

kEGR(K)
k>N

1 (1=n)/2

<n v (K) log n n

which tends to zero as n + ®, by the second part of (2.2). As N is fixed,
n-IZ:_llrk|log k exp(ylrkllog k) + 0, and it follows that also the second

term of the right hand side of (2.3) tends to zero, and thus that (2.1) is

satisfied.

s s s e L




Even if (2.1) is weaker than (2.2) this is only by a slight margin.

-1 -1 .
In fact, n E:allrkllog k<n Zzallrkllog k exp(y|r, |log k), so if
(2.1) holds then n 'Iy_ |r,| log k » 0 which in turn implies that

vn(e) = o(n), Ve > O.

THEOREM 2.2 If r - 0 as n-+® and (2.1) is satisfied then (1.1) holds,
i.e. the distribution of the (normalized) maximum converges to the double

exponential distribution.

As is shown in Berman (1964) we only have to prove the following lemma

to obtain the theorem. We use the notation of Leadbetter (1974).

LEMMA 2.3 Suppose that r satisfies the hypothesis of Theorem 2.2, and
let u = x/an +b . Then
2
n -un/(1+|rk|)

(2.4) nl lrkle
k=1

+0 as n > ®,

PROOF We only indicate the changes which have to be made in [5] p. 22
(or in [1] p. 510). As is shown there

-u2/2
(2.5) & ~ Ku_/n, (n + «)

- (2 log n)liz, (n + «)

(a~b means a = b(1+o(l))) where K is a constant, whose value below
may change from line to line. Further § = sup[rnl <1, Put B =2/y and
let o be a constant such that 0 < a < mig%é, %E%).

Split the sum in (2.4) into three parts, the first for 1 < j < (a1,
the second for [n%] < j < [a®] and the third for [af] < j € n. In [5]
it is shown that the first sum tends to zero.

Next, define 6§ = suplrml and note that Gn +0 as n + @, Now

o s B
writing p = [n'] and q = [n"] we have for the second part of (2.4)

2 - 2

q “us/(+| e, |) ~u- u’é ” S u

n I rken = n1+8enenp Kneluzepn
k=p+1

IA

K ﬂB-IUi n26P9

A




which tends to zero by (2.5). 2
-u_ /2
Finally, for the last part of (2.4) we have, using e W e un/n ~

~ (2 log n)ll2

/n,

o -u2/<1+|rk|) ¢ 2/ 1+, D
o I rle i Kn I Irkl(un/n) <
r k=q+1 k=q+1

A

o n 2|r, |1og n
Kn ! logn I |r e "

: k=q+l

IA

For k > q we have 1log k > B log n, and hence this is not larger than
3. N _, N er Ilog k
Kn A z |rk| log k e2/8ltk1103 ¥ < Kn Lz lrkl log k e . s
k=q+1 k=1

where we have used 2/8 = Y. By (2.1) this tends to zero as n + «, which

i concludes the proof of (2.4). a

3. CONTINUOUS TIME

For a process with continuous time, the constant « in the local covariance
' condition (1.2) influences the normalization needed to obtain the limit
law (1.3) for the maximum. In fact, the value of a also affects the extent
with which the maximum of £(t) over an interval can be approximated by
the maximum over a discrete set of points. Let h(t) be any function and
define
8p(h) = {t; 0 <t < T, |r(t)] log t > h(t)}

(3.1)
ET(h) = A(GT(h)) = Lebesgue measure of e.r(h).

In analogy with the conditions for discrete time we will place restrictions
on the amount of time that |r(t)| log t is large by requiring that there

is some function h with h(t) + 0 as t 4+ ©» such that
(3.2") lr(h) = 0(T/(log T)y). for some Y > max(0, 1 - 1l/a)
and some constant K > 0 such that

(3.2 L (K) = 0(T"), for some n < 1.




e

Obviously (i'), i.e. r(t) logt + 0 as t + «, implies that OT(h) is
uniformly bounded in T, for example with h(t) = 2 sup|r(s)| log &, so
that (i') implies (3.2). Further, since fg]r(t)]pdtsgtlT(h)(h(T)llog T)p,
(i1, i.e. f3 r()%dt < =, implies that L (h) = O((log T/h(1))?) for

all h, so that also (ii') implies (3.2).

THEOREM 3.1 If r(t) * 0 as t +> o and (3.2) is satisfied, then (1.3)
holds, i.e. the distribution of the (normalized) maxima converges to the
double exponential distribution.

Following the routine in Berman (1971) and Leadbetter (1974) we need

only prove the following lemma.

LEMMA 3.2 If 1r(t) satisfies the hypothesis of Theorem 3.1, if

/a

u=u, = x/aT + by, q = g(T)/(log T)1 , where g(T) - 0 as T -+ o, and

if the convergence of g(T) to zero is slow enough, then

4 ‘
3.3 I 5 jrage® /tlrGaD) | g
? eskqgr

as T = o,

PROOF Let &(t) = sup|r(s)|, let B satisfy 0 < B < (1-8(e))/(1+8(¢)),

s2t
and split the sum in (3.3) into two parts at Kkq ksTB, i.e. let I' be
the sum over € < kq < ™ and I" the sum over T < kq < T. Since
2
Y2 2 oyt

we can estimate L' simply from the number of terms,

2
Ty 21 g 5 et |e™ /(1+] r(ka) |)
5y q €<kq<T
B _u2 1+8-2/(1+6(€))
LI, uT/(1+8(e)) KT i
“qq 2 22

by the choice of B and q.
For the remaining sum I" we need a bound on the number of terms

for which |r(kq)|log kq is not bounded by a small function. Define, for

any function h,




(ki

ey

T W T T Ty

|
|
|
|
|
|
|
|
|

T

ng() = #{k; ¥ < kq < T, |r(ka)|log kq > hlke)}

in analogy with LT(h) in (3.1). Since r(t) satisfies a Lipschitz
condition at 0 it does so uniformly for all t. In fact, if a' < min(l, @)

then

lxCe+h) - £(0)| < cln]®,

see Boas (1967), Theorem 1. We will use this to give a bound for “T(h)

in terms of QT(hlz). Let Yy be as in condition (3.2) and take &' such
that a/(l1+ya) < &' < min(l, a). Note that we can always find such an a'
and that G%-- é - ¥ < 0. We will show that for all non-increasing functions
h,

a

(3.6)  ng) < ¢ (log /@ 2 (/2),

if T is large enough. Since, for t > kq, |e(t)|1log t > (Jrkq)| -
1]

= Clt—kq[a )Ylog kq we see that if
|r(kq)|1log kq > h(kq)

and t 1is such that

h(T)

)l/a'
2ClogT

kq < t < kq + (

then
|r(t)[1log t > h(t)/2.

/o 1/a’

We have/ ? = g(T)/(log T)1 and thus (h(T)/log T) /q =
1/a i
7 ESE%TT_' (log T) RO where 0 > a'. Since we have a free choice

in letting g(T) + 0 as slowly as necessary, we may thus assume that
(h(T)/1log T)l/a'q + 0 as T + o, This implies that for T large enough
the kq which contribute to nT(h) also contribute disjoint intervals
of length (h(T)/(2C1og ™)™ to 2.(h/2), and ve get (3.4) with c' =
= /20,

We can now proceed by splitting the sum E" according to if
kq €8,(2K) or not. Recalling the nmotation &(t) = sup|r(s)|, we

s>t
have




2
Tpoal 2 lrapfe™ /lrGD
q T Begeq<r
2 B
: -u"/(1+46(T"))
(3.5) < 7 mp@K)e +
2 B
T -u (1-2K/log T")

<kq<T, quGT(2K)*
The first term in (3.5) is bounded by

-2/ 1#8(18))

1/a’

% c'(log T/2K) "% 2,(K) O(L)T

)1/a‘+1/a

12/ (1+8%))
g(T) '

< C" (10 T

Since n <1 by (3.2) and 6(TB) + 0 this bound goes to zero as T = @
if g(T) > 0 slowly enough.

The second term in (3.5) is bounded by

2
(3.6) GE)Ze-u (1-2K/ (B log T)) 1

b e ot |r(ka)|log kq = ¥, «F

1 2

8

say, where the sum is extended over all kq such that T < kq < T and

quOT(ZK)*. We will see that Fl + oo, Fz + 0 as T = o, but that 1“1'F2 -+ 0.
We start with FZ’ introducing the function h that appears in (3.2') and

split the sum according to wether quSBT(Zh) or not, giving

F, =3 2{r(q)[log kq <3 I 3 z <
kq€0,(2n)* kq€8,,(2h)NB,.(2K)*
kq<T

T ]
< 3T 2Py + Learay(m) < 21y + 2" Fiog T/m(m)t/®

ET(h) =
= 2n(1®) « —BEL . (10g 1y /" =1/97Y (1) = 2n(1f)+g(mK(D),
(h(T))
say, by Condition (3.2') and the definition of g. Since 1l/a'-l/a~y < 0,
we can deduce that k(T) - 0 as T + o, provided h(t) decreases sufficiently
slowly. Also note that if (3.2') is fulfilled for some function h, then it is
fulfilled for all functions which decrease more slowly. We can therefore assume

that k(T) + 0 as T + «, The remaining factor F in (3.6) is given by




b (B2 -2/ 6 log T) _1
17 Q Blog T °

Using the fact that

o’ = 2 l0g T+ 2G - Dlog log T + 0(1)
we get
F. = 0(1) -2(1/a-1/2)log log T
1 2
q log T
- S0 (4 pler1-2(ifonlid) | o)
g(T) g(T)
Thus

8
ey s oo 20 1l
g(T)
where k(T) does not depend on g(T). Since we may let g(T) > 0
arbitrarily slowly we obtain that h(TB)/g(T)2 + 0 and k(T)/g(T)2 + 0 as

T + o, which completes the proof of the lemma.

REMARK 3.3 As in discrete time one would be inglined to consider a condition
3

like

(3.7 9 5 |r(kq)|log kq Ylr(ka)|log kq | 4

i
TBSquT

as T » o, for some B < 1, ¥y > 2. We can presently prove that (3.7) can
replace (3.2) at least if o = 2, However, (3.7) contains the somewhat
arbitrary spaging q. A more natural condition for a continuous time process

would restrict the size of

T
& ]rg:)!log t eYIr(t)|1og 5 g
1

How tliis c@ould be done in relation to (3.7) is not clear.
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